МУНИЦИПАЛЬНОЕ УЧРЕЖДЕНИЕ

ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ

«ЦЕНТР ДЕТСКОГО ТВОРЧЕСТВА ПРИОНЕЖСКОГО РАЙОНА»

«Рекомендовано»	«Утверждаю»
Педагогическим Советом	Директор
Протокол № 5	А.А. Борисовская
от 28.08.2024	

Рабочая программа технической направленности

«Занимательная робототехника» с. Деревянное

возраст обучающихся 7-12 лет срок реализации 3 года

Составитель: Борисовская А.А., директор МУ ДО «ЦДТ Прионежского района»

Оглавление

1.	Пояснительная записка	3
	1.1.Адресат программы:	
	1.2.Срок реализации программы	
	1.3. Актуальность программы	
	1.4. Новизна образовательной программы	4
	1.5. Формы организации учебных занятий	4
2.	Задачи программы	4
3.	Учебно-тематический план	5
	3.1. Учебно-тематический план I года обучения	5
	3.2. Учебно-тематический план II год обучения	10
	3.3. Учебно-тематический план III год обучения	7
4.	Содержание учебно-тематического плана	8
	4.1. Содержание учебно-тематического плана I года обучения	8
	4.2. Содержание учебно-тематического плана II года обучения	10
	4.3. Содержание учебно-тематического плана III года обучения	11
5	Список использованной питературы	12

1. Пояснительная записка

Дополнительная общеразвивающая программа «Занимательная робототехника» включает в себя изучение ряда направлений в области конструирования и моделирования, программирования и решения различных технических задач.

За основу для данной программы была взята примерная программ «Занимательная робототехника», опубликованная по ссылке http://profil.mos.ru/it/wpcontent/uploads/2019/07/robo.pdf и дополнительная общеразвивающая программа «Робототехника» (автор-составитель Груздева И.А.).

Программа позволяет повысить эффективность познавательного процесса обучающихся. Программа является целостной и непрерывной в течение всего процесса обучения, и позволяет ребёнку шаг за шагом раскрывать в себе творческие возможности. Изучая простые механизмы, ребята учатся работать руками (развитие мелких и точных движений), развивают элементарное конструкторское мышление, фантазию, изучают принципы работы многих механизмов.

1.1. Адресат программы:

Дети от 7-12 лет. По стадиям когнитивного развития Пиаже от 7 до 12 лет идет стадия конкретных операций, время, когда дети начинают мыслить логически, классифицировать объекты по нескольким признакам и оперировать математическими понятиями, кроме того они достигают понимания сохранения. Согласно теории Эриксона, ребенок в этот период находится на латентной стадии, когда он развивает многочисленные навыки и умения в школе, дома и среди своих сверстников. Все большее значение приобретает сравнение себя с ровесниками. В этот период, особенно сильный вред наносит негативное оценивание себя по сравнению с другими. В этом возрасте ребенок при столкновении с проблемой предпочитает непосредственное преодоление или же решение проблемы под минимальным контролем. Он начинает осознавать многообразие эмоций к одному и тому же лицу. К тому же у ребенка появляется тенденция к свободному выражению эмоций и он эмоционально быстро включается в спор. Также в этот период начинают формироваться задатки чувства юмора.

1.2.Срок реализации программы: 3 года обучения.

1.3. Актуальность программы определяется тем, что материал по курсу «Занимательная робототехника» строится так, что используются знания учащихся из множества учебных дисциплин. Межпредметные занятия опираются на естественный интерес к разработке и постройке различных механизмов. Разнообразие конструкторов LEGO позволяет заниматься с учащимися по разным направлениям (конструирование, программирование, моделирование физических процессов и явлений).

Знакомство школьников с моделированием способствует развитию их аналитических способностей и личных качеств. Особое внимание уделяется развитию логического и пространственного мышления. Ученики учатся работать с предложенными инструкциями, формируются умения сотрудничать с партнером, работать в коллективе.

На занятиях предполагается использование образовательных конструкторов LEGO. Работа с конструкторами позволяет детям в форме познавательной игры узнать многие важные идеи и развить необходимые в дальнейшей жизни навыки. При построении модели затрагивается множество проблем из разных областей знания — что является вполне естественным. В основу курса «Занимательная робототехника» заложены принципы практической направленности.

1.4. Новизна образовательной программы

Новизна заключается в том, что программа полностью построена с упором на практику, т.е. сборку моделей на каждом занятии. Конструирование как учебный предмет является комплексным и интегративным, он предполагает реальные взаимосвязи практически со школьными предметами: математикой, физикой, технологией. Тематический подход объединяет в одно целое задания из разных областей. Работая над моделью, ученики не только пользуются знаниями, полученными на уроках математики, окружающего мира, изобразительного искусства, но и углубляют их: Математика — понятие пространства, изображение объемных фигур, выполнение расчетов и построение моделей, построение форм с учётом основ геометрии, работа с геометрическими фигурами. Окружающий мир - изучение построек, природных сообществ, рассмотрение и анализ природных форм и конструкций, изучение природы как источника сырья. Родной язык — развитие устной речи в процессе анализа заданий и обсуждения результатов практической деятельности (построение плана действий, построение логически связных высказываний в рассуждениях, обоснованиях, формулировании выводов). Изобразительное искусство - использование художественных средств, моделирование с учетом художественных правил.

1.5. Формы организации учебных занятий

Группы первого, второго и третьего года обучения – по 1 часу 1 раз в неделю – 36 часов.

2. Задачи программы

Обучающие (предметные)

- Обучить первоначальным знаниям о конструкции робототехнических устройств;
- Познакомить с принципами и методами разработки, конструирования и программирования управляемых электронных устройств;
- Развивать навыки программирования, повысить мотивацию к обучению практического интегрированного применения знаний, полученных в различных образовательных областях (математика, физика, информатика);
- Развитие умения работать по предложенным инструкциям;
- Развивать интерес к научно-техническому, инженерно-конструкторскому творчеству, сформировать общенаучные и технологические навыки конструирования и проектирования, развивать творческие способности детей.

Развивающие (метапредметные)

- Сформировать и развить креативность, гибкость и самостоятельность мышления на основе игровых образовательных и воспитательных;
- Организации совместной продуктивной деятельности (умения работать над проектом в команде, эффективно распределять обязанности, развитие навыков межличностного общения и коллективного творчества);
- Развитие индивидуальных способностей ребенка;
- Развитие умения довести решение задачи до работающей модели;
- Развитие умения излагать мысли в четкой логической последовательности;
- Отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;

• Повышение интереса к учебным предметам посредством конструктора.

Воспитательные

- воспитание у детей интереса к техническим видам творчества;
- развитие коммуникативной компетенции: навыков сотрудничества в коллективе, малой группе (в паре), участия в беседе, обсуждении;
- развитие социально-трудовой компетенции: воспитание трудолюбия, самостоятельности, умения доводить начатое дело до конца;
- формирование и развитие информационной компетенции: навыков работы с различными источниками информации, умения самостоятельно искать, извлекать и отбирать необходимую для решения учебных задач информацию.

3. Учебно-тематический план

3.1. І год обучения

№	Название раздела, темы	Всего	В том числе		Формы аттестации (контроля)
			Теория	Практика	(Non-polin)
1.	Раздел 1. Введение.	1	0,5	0,5	
1.1.	Техника безопасности.	0,5	0,5	0	опрос
1.2.	Знакомство с программой. История развития робототехники.	0,5	0	0,5	беседа
2.	Раздел 2. Знакомство с ПО и	2	0	2	
	составом конструктора.				
2.1.	Изучение интерфейса ПО Lego WeDo Education.	1	0	1	практическая работа
2.2.	Знакомство с конструктором WeDo. Элементы набора.	1	0	1	опрос, практическая работа
3.	Раздел 3. Изучение механизмов.	3	3	0	
3.1.	Изучение механизмов: LEGO USB Hub (коммутатор).	0,5	0,5	0	практическая работа
3.2.	Изучение механизмов: большой двигатель.	0,5	0,5	0	практическая работа
3.3.	Изучение механизмов: датчик движения.	1	1	1	практическая работа
3.4.	Изучение механизмов: датчик положения.	1	1	1	практическая работа
4.	Раздел 4 Построение базовых моделей.	9	0	9	
4.1.	Построение готовых решений: Палочка на двигателе.	1	0	1	практическая работа, демонстрация готовой модели
4.2.	Построение готовых решений: Мини-робот из WEDO 2.0.	1	0	1	практическая работа, демонстрация готовой модели

4.3.	Построение базовых моделей: Платформа.	1	0	1	практическая работа, демонстрация
4.4.	Построение базовых моделей: Радар.	1	0	1	готовой модели практическая работа, демонстрация
4.5.	Изучение готовых проектов: Мобильный дом.	1	0	1	готовой модели практическая работа, демонстрация готовой модели
4.6.	Построение базовых моделей: Робот-наблюдатель.	1	0	1	практическая работа, практическая работа, демонстрация готовой модели
4.7.	Построение базовых моделей: Крокодил 2.0.	1	0	1	практическая работа, практическая работа, демонстрация готовой модели
4.8.	Построение базовых моделей: Вертолёт.	1	0	1	практическая работа, практическая работа, демонстрация готовой модели
4.9.	Построение базовых моделей: Станок WEDO 2.0.	1	0	1	практическая работа, практическая работа, демонстрация готовой модели
5	Раздел 5 Изучение готовых проектов Lego Wedo 2.0.	15	5	10	практическая работа
5.1.	Изучение готовых проектов: Майло, научный вездеход.	3	1	2	практическая работа
5.2.	Изучение готовых проектов: Тяга. Робот-тягач. Соревнования роботов-тягочей.	3	1	2	практическая работа, соревнования
5.3.	Изучение готовых проектов: Скорость. Гоночный автомобиль. Соревнование автогонки.	3	1	2	практическая работа, соревнования
5.4.	Изучение готовых проектов: Прочность конструкции. Симулятор для землетрясений.	3	1	2	практическая работа
5.5.	Изучение готовых проектов: Машина для сортировки мусора.	3	1	2	практическая работа
6	Раздел 6. Индивидуальная проектная работа. Лего-соревнования.	6	0	6	практическая работа
6.1	Подготовка проекта. Итоговое занятие. Презентация проектов.	5	0	5	защита проекта
	iipesemiagim iipeemies.				
6.2	Лего-соревнования.	1	0	1	

3.2. II год обучения

N₂	Название раздела, темы	Всего	В том числе		Формы аттестации
	•		Теория	Практика	(контроля)
1	Раздел 1 Конструирование.	15	6	9	-
1.1.	Вводное занятие.				
	Инструктаж по технике	1	1	0	-
	безопасности.				
1.2.	Обзор набора. Обзор История	1	1	0	
	робототехники.	1	1	0	-
1.3.	Способы крепления деталей.	1	0	1	-
1.4.	Механический манипулятор.	1	0	1	-
1.5.	Механическая передача:				
	передаточное отношение волчок,	2	1	1	-
	редуктор.				
1.6.	Работа с моторами.	2	1	1	-
1.7.	EV3. Базовые конструкции:	2	1	1	_
	ожидание, цикл, ветвление.		1	1	
1.8.	EV3. Переменные.	2	1	1	_
	Полноприводная тележка.				
1.9.	Создание «своих» блоков.	3	0	3	-
2	Раздел 2 Программирование.	10	2	8	-
2.1.	EV3. Экран, звук, время.	1	1	0	-
2.2.	EV3. Экран. Вывод.	1	0	1	-
2.3.	Взаимодействие блоков.	1	1	0	-
2.4.	Использование датчиков.	1	0	1	_
	Режимы работы датчиков.	1	0	1	
2.5.	Датчик касания.	1	0	1	_
	Управляемый робот.				
2.6.	Ультразвуковой датчик.	1	0	1	
2.7.	Датчик света.	1	0	1	-
2.8.	Итоговое занятие базовому курсу.	3	0	3	-
3	Раздел 3 Решение кейсов.	11	1	10	-
3.1.	Создание типовых кейсов.	5,5	0,5	5	-
3.2.	Разработка и защита проекта.	5,5	0,5	5	-
	ИТОГО	36	8	28	

3.3. III год обучения

No	Happayyya man yaya mayay	Количество часов			Формы
Π/Π	Название раздела, темы	Всего	Теория	Практика	аттестации/контроля
	Раздел 1 Конструирование.	7	2	5	-
1.1.	Вводное занятие. Инструктаж по технике безопасности.	1	1	0	-
1.2.	Базовые конструкции: сборка «своих» блоков.	6	1	5	-
	Раздел 2. Программирование.	15	3	12	-
2.1.	Программирование в блоке.	4,5	1	3,5	-
2.2.	Использование датчиков.	4,5	1	3,5	-
2.3.	Итоговое занятие.	6	1	5	-
	Раздел 3. Решение кейсов.	14	2	12	-
3.1.	Создание типовых кейсов.	6	1	5	-
3.2.	Разработка и защита проекта.	8	1	7	Защита проекта
	ОЛОТИ		7	29	-

4. Содержание учебно-тематического плана

4.1. Содержание учебно-тематического плана І год обучения

Раздел 1. Введение.

1. 1 Общая информация. Правила по технике безопасности при работе с оборудованием в классе.

Теория. Знакомство с учащимися. Уточнение расписания и режима занятий. Правила поведения и правила по технике безопасности на занятиях.

Формы контроля: беседа

Тема 1.2. История развития робототехники. Теория История робототехники от глубокой древности до наших дней. Идея создания роботов. Что такое робот. Определение робота. Виды современных роботов. Классификация роботов. Формы контроля: беседа

Раздел 2 Знакомство с ПО и составом конструктора

- **2.1.Изучение интерфейса ПО Lego WeDo** Теория Изучение программных блоков. Принципы программирования в среде Lego WeDo. Блоки управления мотором и индикатором смартхаба. Блоки управления программой. Блоки работы с датчиками. Блоки расширения. Формы контроля: составление программа по заданным параметрам
- **Тема 2.2. Знакомство с конструктором**. Элементы набора. Теория Кирпичики. Балки. Оси. Зубчатые колеса. Пластины. Соединительные элементы. Электронные элементы (смартхаб, датчик наклона, мотор, датчик перемещения).
- **Тема 2.3 Практика: изучение интерфейса программного обеспечения Lego WeDo Education** Теория: Виды и назначение программного обеспечении. Оновы работы в среде программирования Lego. Изучение блоков: движение, ждать, сенсор, цикл и переключатель. Практика: создание простейших линейных программ: движение вперёд, назад, поворот назаданный угол, движение по кругу. Формы контроля: практическая работа, педагогическое наблюдение
- **2.2 Теория:** знакомство с конструктором WeDo Теория: Знакомство с компонентами конструктора LegoWeDo 2.0. Элементы набора. Цвет элементов. Моторы и оси.Практика: Конструирование простейших моделей.Формы контроля: педагогическое наблюдение, практическая работа

Раздел 3 Изучение механизмов: датчиков и моторов

Обучающиеся получают знания об устройстве и принципах работы моторов и датчиков, входящих в комплект. На данном этапе изучение ведется на основании инструкций, встроенных в программное обеспечение Lego WeDo.

- **Тема 3.1. Изучение механизмов: LEGO USB Hub (коммутатор).**Теория: Функции коммутатора. Устройство коммутатора. Разъёмы.Практика: работа с механизмом LEGO USB Hub (коммутатор)
- **Тема 3.2. Теория: изучение механизмов: большой двигатель.**Теория: Мотор: определение, назначение. Способы соединения мотора с механизмом. Маркировка моторов.Практика: Подключение мотора к компьютеру. работа с механизмом большой двигатель.Формы контроля: практическая работа, педагогическое наблюдение
- **3.3 Теория: изучение механизмов: датчик движения** Теория Датчик расстояния и движения определение, назначение, процесс подключения к компьютеру. Практика: работа с механизмом датчик движения. Формы контроля: практическая работа, педагогическое наблюдение
- **3.4 Теория: изучение механизмов:** датчик положения Теория Определение датчика положения. Его функции. Практика: работа с механизмом датчик положения. Формы контроля: практическая работа, педагогическое наблюдение

- Раздел 4 Построение базовых моделей (17 ч) В разделе «Построение базовых моделей» идет работа с предустановленными в программное обеспечение схемами для сборки моделей. Отличительной особенностью данного раздела является построение тематических моделей и изучение основ программирования. Формируется осознание взаимодействия механических соединений моторов, датчиков и программного кода.
- **Тема 4.1 Построение готовых решений: палочка на двигателе.**Практика: построение модели

Формы контроля: практическая работа, педагогическое наблюдение, демонстрация готовой модели

- **Тема 4.2. Построение готовых решений: Мини-робот из Wedo 2.0.** Практика: построение модели. Формы контроля: практическая работа, педагогическое наблюдение, демонстрация готовой модели
 - Тема 4.3. Построение готовых решений: Платформа. Практика: построение модели

Формы контроля: практическая работа, педагогическое наблюдение, демонстрация готовой модели

- **Тема 4.4. Построение готовых решений**: Радар. Практика: построение модели. Формы контроля: практическая работа, педагогическое наблюдение, демонстрация готовой модели.
- **Тема 4.5. Построение готовых решений**: Мобильный дом. Практика: построение модели. Формы контроля: практическая работа, педагогическое наблюдение, демонстрация готовой модели
- **Тема 4.6. Построение готовых решений: Робот-наблюдатель** Практика: построение модели

Формы контроля: практическая работа, педагогическое наблюдение, демонстрация готовой модели

- **Тема 4.7. Построение готовых решений: Крокодил 2.0**. Практика: построение модели Формы контроля: практическая работа, педагогическое наблюдение, демонстрация готовой модели
- **Тема 4.8. Построение готовых решений: Вертолёт.** Практика: построение модели Формы контроля: практическая работа, педагогическое наблюдение, демонстрация готовой модели
- **Тема 4.9. Построение готовых решений: Станок Wedo 2.0.** Практика: построение модели Формы контроля: практическая работа, педагогическое наблюдение, демонстрация готовой модели

Раздел 5 Создание проектов по заданным темам

В разделе «Создание проектов» обучающиеся занимаются проектной деятельностью, реализуют различные проекты, не входящие в обязательные инструкции программного обеспечения Lego WeDo, разработанные сторонними конструкторами. Обучающиеся оценивают преимущества или недостатки собранных моделей и пытаются подобрать самостоятельное решение для создания работоспособной модели. Форма проведения: беседа, рассказ, демонстрация, соревнования

- **Тема 5.1.Изучение готовых проектов: Майло , научный вездеход** Теория Вступительный видеоролик об исследовании Луны, Марса, подводных глубин. Датчик перемещения, датчик наклона. Практика построить и запрограммировать Майло, используя датчики перемещения и наклона, командная работа. Формы контроля: практическая работа, педагогическое наблюдение, демонстрация готовой модели
- **Тема 5.2. Изучение готовых проектов: Тяга. Робот-тягач** Теория: Действие уравновешенных и неуравновешенных сил на движение объекта. Что заставляет объекты двигаться. Тянущая и толкающая сила, действующая на объект. Суммарная сила, действующая на объект. Сила сопротивления, возникающая при контакте двух объектов. Трение покоя. Трение

качения. Равновесие. Трение скольжения. Практика: построение и программирование роботатягоча

Формы контроля: практическая работа, педагогическое наблюдение, демонстрация готовой молели

- **Тема 5.3. Изучение готовых проектов: Скорость. Гоночный автомобиль** Теория Понятие скорости. Ускорение. Мера измерения скорости. Система шкивов. Практика построение и программирование гоночного автомобиля. Формы контроля: практическая работа, педагогическое наблюдение, демонстрация готовой модели
- **Тема 5.4. Изучение готовых проектов: Прочность конструкции**. Симулятор для землетрясений.

Теория: Понятие Землетрясение. Тектонические плиты. Шкала Рихтера. Прототип. Переменная. Механизм возникновения землетрясений. Материалы и конструкции, чтобы противостоять землетрясениям. Практика: построить и запрограммировать симулятор землетрясения и здание.

Формы контроля: практическая работа, педагогическое наблюдение, демонстрация готовой модели

Тема 5.5. Изучение готовых проектов: Машина для сортировки мусора Теория: Понятие Переработка. Сортировка. Отходы. Физические свойства предметов (вес, масса, объём). Практика: построение и программирование машины для переработки объектов. Формы контроля: практическая работа, педагогическое наблюдение, демонстрация готовой модели

Раздел 6 Разработка и создание собственного проекта

Обучающиеся выбирают тему проекта из предложенных педагогом или предлагают свою. Прежде чем приступать к выполнению проекта тема проекта обсуждается в группе. Проект выполняется малыми группами.

4.2. Содержание учебно-тематического плана II года обучения

Раздел 1. Конструирование.

- *1.1.* **Вводное занятие. Инструктаж по технике безопасности.** Вводный инструктаж по охране труда и технике безопасности. Электробезопасность, пожарная безопасность.
- **1.2. Обзор набора. Обзор ПО. История робототехники.** О компании LEGO и их конструкторах. История робототехники. Состав набора. Принцип названия деталей.
 - 1.3. Способы крепления деталей. Основные способы крепления деталей, колес.
- **1.4. Механический манипулятор.** Построение простого манипулятора. Способы укрепления моделей для решения разных задач. Построение манипулятора для решения задачи «Спасение животных». Робот-манипулятор построение автономного робота-манипулятора. Робот-сортировочный конвейер построение автономной сортировочной ленты конвейера.
- **7.5. Механическая передача: передаточное отношение, волчок, редуктор.** Зубчатые передачи. Изучение соединения шестеренок на основе построения мультипликатора для «волчка». Исследование изменения скорости вращения волчка при использовании мультипликатора. Понижающие и повышающие коэффициенты.
- **1.6. Работа с моторами.** Блоки: рулевое управление, ожидание. Режимы и параметры блоков. Подключаемые порты. Перемещение по прямой при помощи блока рулевого управления. Алгоритмы точного поворота алгоритмы поворота робота с помощью рулевого, независимого управления и большого мотора.
- **1.7. EV3. Базовые конструкции: ожидание, цикл, ветвление.** Задачи на ожидание, цикл и ветвление без использования датчиков.

- *1.8.* **EV3. Переменные. Полноприводная тележка.** Перемещение приводной платформы со случайно выбранной скоростью и в случайно выбранном направлении.
- 1.9. Создание «своих» блоков. Алгоритм создания «своих» блоков в среде Lego Mindstorms EV3.

Раздел 2. Программирование.

- **2.1. EV3. Экран, звук, время.** Датчик цвета в режиме измерения яркости отраженного цвета. Значение посылается на мощность моторов и выводится на экран. Значение ультразвукового датчика отправляется на математический блок и умножается в нем на 50. Результат посылается на частоту блока звука и воспроизводится тон.
- **2.2. EV3.** Экран. Вывод. Перемещение приводной платформы со случайно выбранной скоростью и в случайно выбранном направлении с выводом случайного значения на экран. Посчитать количество нажатий на кнопку, посчитать количество перекрестков за определенное время.
 - **2.3. Взаимодействие блоков.** Взаимодействие блоков с помощью Bluetooth и usb.
- **2.3. Использование** датчиков. Режимы работы датчиков. Описание режимов и особенностей работы каждого датчика.
- **2.4.** Датчик касания. Управляемый робот. Парковка с использованием датчика касания (пока тележка не коснется стенки). Робот на самодельном джойстике из датчиков касания. Азбука Морзе.
- **2.5.** Ультразвуковой датчик. Знакомство с датчиком характеристики, особенности работы, параметры датчика. Задание «Парковка» с использованием ультразвукового датчика (двигаться до расстояния 4 см) и т.д. Короткий лабиринт совместная работа ультразвукового датчика и датчика касания. Прохождение лабиринта.
- **2.6.** Датчик света. Знакомство с датчиком характеристики, особенности работы, параметры датчика. Алгоритмы движения по линии движение по черной кривой: датчик цвета, циклическое движение, режим «Яркость отраженного света». Определение цветов в режиме цвета. Задание «Лабиринт» движение по черной кривой в лабиринте.
- **2.7. Итоговое занятие по базовому курсу.** Подведение итогов по двум разделам. Составление простых программ.

4.3. Содержание учебно-тематического планирования III года обучения

Раздел 1. Конструирование.

- *1.1.* **Вводное занятие. Инструктаж по технике безопасности.** Вводный инструктаж по охране труда и технике безопасности. Электробезопасность, пожарная безопасность.
- *1.2.* **Базовые конструкции: сборка «своих» блоков.** Алгоритм создания «своих» блоков в среде Lego Mindstorms EV3.

Раздел 2. Программирование.

- **2.1. Программирование блоков.** Взаимодействие блоков с помощью Bluetooth и usb.
- **2.2. Использование** датчиков. Режимы работы датчиков описание режимов и особенностей работы каждого датчика.
- **2.3. Итоговое занятие.** Подведение итогов по двум разделам. Составление простых программ.

Раздел 3. Решение кейсов.

- **3.1. Создание типовых кейсов.** Проектирование и создание роботов на основе освоения базовых конструкторских материалов.
- **3.2. Разработка и защита проекта.** Проектирование и создание собственных роботов. Презентация своего проекта.

5. Список использованной литературы

- 1. Вильяме Д. Программируемый робот, управляемый с КПК /Д. Вильяме; пер. с англ. А. Ю. Карцева. М.: НТ Пресс, 2006. 224 с; ил. (Робот своими руками).
- 2. Журнал «Компьютерные инструменты в школе», подборка статей по теме «Основы робототехники на базе конструктора Lego».
- 3. Карпов В.Э. «Мобильные мини роботы» Часть І Знакомство с автоматикой и электроникой. М: 2009.
- 4. Копосов Д.Г. Первый шаг в робототехнику: практикум для 5-6 классов. М.: БИНОМ. Лаборатория знаний, 2012.
 - 5. Робототехника для детей и родителей. С.А.Филиппов. СПб: Наука, 2010.
 - 6. Скотт Питер. Промышленные роботы переворот в производстве. М.: Экономика, 2007.
 - 7. Фу К., Гансалес Ф., Лик К. Робототехника: Перевод с англ. М. Мир, 2010.
 - 8. Филиппов С. А. Робототехника для детей и родителей. СПб: Наука, 2011.
- 9. Юревич Ю.Е. Основы робототехники. Учебное пособие. СПб: БВХПетербург, 2005. **Литература, рекомендованная учащимся**
 - 1. Филиппов С. А. Робототехника для детей и родителей. СПб: Наука, 2011.
 - 2. Копосов, Д. Г. «Первый шаг в робототехнику. Рабочая тетрадь для 5-6 классов».

Ресурсы в Интернете

- 1. Андре П., Кофман Ж.-М., Лот Ф., Тайар Ж. П. Перевод с французского Далечиной Д. М., Фанченко М. С., кандидата технических наук Чебуркова В. И. под редакцией доктора технических наук Долгова А. М -Москва, Мир, 1986. [Электронный ресурс] Режим доступа: http://экономикаизобилия.рф/ техническая-библиотека/конструирование-роботов, свободный.
- 2.Навыки для решения задач будущего [Электронный ресурс] Режим доступа: https://education.lego.com/ru-ru/middle-school/intro, свободный.
- 3. Робототехника: с чего начать изучение, где заниматься и каковы перспективы. М.Савина [Электронный ресурс] Режим доступа: https://www.dgl.ru/articles/robototehnika-s-chego-nachatizuchenie-gdezanimatsya-i-kakovy-perspektivy_11654.html, свободный.
- 4. Робототехника на VEX IQ. О.Горнов. Научно-популярный портал Занимательная робототехника [Электронный ресурс] Режим доступа: http://edurobots.ru/2017/06/vex-iq-1/, свободный.
- 5. Занятие по робототехнике [Электронный ресурс] Режим доступа: http://robot-prz.blogspot.ru, свободный.
- 6. Затраты энергии при различных видах деятельности [Электронный ресурс] Режим доступа: http://max- body.ru/raznoe/spravochnaja-informacija/472- zatraty-jenergii-pri-razlichnykh-vidakh.html, свободный.
- 7. Инновационная школа. Сообщество по робототехнике [Электронный ресурс] Режим доступа: http://inoschool.ru, свободный.
- 8. Конструирование робота "ROBOTEH". Механика в робототехнике [Электронный ресурс] Режим доступа: http://www.robolive.ru/mecanics/, свободный